Abstract
A combined species transport and reaction-discrete phase model was established to numerically study pulverized coal gasification using waste heat from high temperature slag particles. The effects of slag particles temperature, coal/gasification agent mass ratio and water content in gasification agent on the gasification characteristics were discussed. The results indicate that higher particle temperature leads to better gasification reaction efficiency. Compared to the maximum syngas productivity (67.9%) and carbon conversion efficiency (91.7%) at 1500 K, they are respectively reduced to about 45% and 60% when temperature drops to 1000 K. Excessive or insufficient pulverized coal would have a negative effect on the syngas production for a specific flow rate of gasification agent, and the appropriate proportion range is 0.8–0.84. The CO yield declines with the increase of particles diameter, while H2 firstly increases and then declines attributing to the lower gasification agent temperature and higher flow velocity gained at larger diameter. The raise of water content in gasification agent is beneficial to H2 production, but CO yield continues to decline after the water content exceeds 5% for the reason that the incomplete combustion of volatiles and the gasification reaction of coke are inhibited. The diameter of slag particles and the water content suitable for coal gasification reaction are 2.0–2.5 mm and 5%–10%, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.