Abstract
Squeeze casting technology for magnesium alloys has a great application potential in automobile manufacturing and has received increasing attention from both academic and industrial communities. In this study, the pressurized solidification behavior of magnesium alloy AZ91D in squeeze casting process was investigated using computer-aided cooling curve analysis (CA-CCA). It was found that the applied pressure increased both the start and end temperatures of primary α-Mg formation but had little effect on the sizes of temperature ranges. Moreover, the applied pressure increased the start temperature and decreased the end temperature of eutectic reaction during the solidification, resulting in a larger temperature range of eutectic reaction compared with solidification under atmospheric pressure. The grains were remarkably refined, and the eutectic fraction increased with increasing applied pressure. The dendritic microstructure with a larger secondary dendrite arm spacing (SDAS) was observed under a higher applied pressure at the central part of the experimental casting. By correlating the CA-CCA and SDAS data, it was found that SDAS and the cooling rate at the maximum α-Mg growth could be fit into the power law equation in classic solidification theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.