Abstract

Summary The vane swirler separator is widely used in the separation process of wet natural gas owing to a small volume, high efficiency, economy, and environmental protection. In addition to the separation efficiency, the pressure drop is also an important technical and operational index for evaluating the performance of the swirler. In this study, the pressure drop of a swirler vane separator was studied through laboratory experiments and numerical simulations. Through the visualization experimental study of the liquid membrane formation rule and its movement pattern, the reduced gas velocity on the pressure drop was divided into three stages. For a gas superficial velocity less than 5.69 m/s, the effect of gas superficial velocity on the pressure drop was small; for a gas superficial velocity greater than 16.57 m/s, the pressure drop increased significantly with an increase in gas flow rate, and the maximum pressure drop was generated by the two-stage swirler, downstream of which the pressure decreased precipitously. We also observed that when the liquid volume content was less than 3%, the gas superficial velocity was the dominant factor affecting the change in the pressure drop. The average relative error of the pressure drop prediction model based on the conservation of the energy law was 6.16%, which indicated a high calculation accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call