Abstract

Electromagnetic (EM) wave pollution has become the chief physical pollution for environment. In recent years, some researches have been focused on the preparation of nano-composite absorbers at low temperatures or even at room temperature. In this letter, preparation of nanocomposite by using high-energy ball milling at room temperature is reported. The core-nanoshell composite absorbers with magnetic fly-ash hollow cenosphere (MFHC) as nuclear and nanocrystalline magnetic material as shell were prepared by high-energy ball milling and vacuum-sintering in this paper. The pre-treatment of MFHC, the sintering process and the mol ratio of starting chemicals had a significant impact for property of composite absorbers. The results of X-ray diffraction analysis (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and vector network analyzer (VNA) analysis indicated that perfect-crystalline nanomagnetic material coating was gotten with a particle size of 12 nm after ball milling. The results show the MFHC is dielectric loss and magnetic loss too; the exchange-coupling interaction happened between ferrite of the MFHC and nanocrystalline magnetic material coating. The exchange-coupling interaction enhances magnetic loss of composite absorbers. They have a perfect EM parameters at low microwave frequency. The core-nanoshell composite absorbers have a higher magnetic loss at low frequencies, and it is consistent with requirements of the microwave absorbing material at the low-frequency absorption. The microwave absorptivity of the core-nanoshell composite absorbers is better than single material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call