Abstract

This study applied an ion-imprinting technique to create nickel recognition sites on a cation exchange membrane which can solely allow nickel ions to pass through. Such nickel selective membrane can effectively separate specific metal ions, that is, it can avoid other heavy metals with similar molecular weight and the same valence to penetrate the membrane. In order to separate Ni2+ ions from wastewater containing Ni2+ and Cu2+, an electrodialytical system is used with the nickel selective membrane. Experimental results show that the adsorption efficiency of self-manufacturing membrane increased with nickel ions concentration, the 90% removal efficiency can be obtained. The highest adsorption capacity has reached around 63 mg/g at the nickel concentration of 400 mg/L, which is significantly higher than the commercial cation exchange membrane. Meanwhile, the prepared nickel selective membrane majorly adsorbed the nickel ions when copper and nickel ions are presented in the wastewater simultaneously. The separation and recovery efficiency of nickel ions can rapidly reach around 50% and 70%, respectively, by the electrodialytical system with such selective membrane operate data voltage of 50 V for 60 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call