Abstract
To further explore the material early-warning application of the luminescent coating, we demonstrated a new method by preparing a mixture layer of metallic erbium and oxidized zirconium (Er-ZrO2 layer) using the double glow plasma surface alloying technology with Zr and Er co-sputtering under oxygen plasma exposure. The microstructure, composition and luminescence properties of the layers were characterized by scanning electron microscopy, X-ray diffraction, Raman and photoluminescence spectra. The dependence of the luminescence on the gradual concentration was studied. Results indicated that the contents of Zr, Er and O in the layer decreased gradually along the depth direction. The luminescence properties were concentration-dependent. X-ray diffraction analysis showed that the crystalline structure of ZrO2 layer transferred from a mixture phase of tetragonal and monoclinic to pure monoclinic phase with the Zr-Er co-sputtering. The Raman bands of the layers depended on its local ZrO2 crystal structures. Photoluminescence characteristics of Er-ZrO2 layer revealed that the main emission bands were assigned to 2H11/2→4I15/2 and 4S3/2→4I15/2 transition under the excitation at 325 nm. The fact suggested that the plasma surface alloying is an effective method to obtain luminescent layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.