Abstract

Adsorption desulfurization of catalytic gasoline (S Zorb) is an important desulfurization measure that is performed to meet the environmental protection requirements before the final product oil is sold in the market. The desulfurization reactor is a gas–solid two-phase flow environment composed of high-temperature and high-pressure hydrogen-oil mixed gas and sorbent particles; erosion prominently occurs on the reactor distribution plate. This study selects the typical gas–solid two-phase flow conditions and defines the erosion mechanism of the gas–solid two-phase flow environment for the plastic material of E347. Moreover, an S Zorb desulfurization reactor model is constructed, the CFD-DEM model is adopted to predict the wall erosion characteristics in a gas–solid two-phase flow environment, typical erosion laws are obtained via calculations. The erosion laws under the influence of variable parameters are studied based on the orthogonal test, the orthogonal test results show the best parameter combination, the parameter combination yields the maximum erosion rate and high erosion area that are 29.9% and 17.3%, respectively, lower than the existing values. Moreover, an optimum scheme of the inner structure parameters of the reactor is determined for reducing erosion rate and area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call