Abstract

An efficient variable-reordering method for finite element meshes is used and the effect of variable-reordering is investigated. For the element renumbering of unstructured meshes, Cuthill-McKee ordering is adopted. The newsy reordered global matrix has a much narrower bandwidth than the original one, making the ILU preconditioner perform bolter. The effect of variable reordering on the convergence behaviour of saddle point type matrix it studied, which results from P2/P1 element discretization of the Navier-Stokes equations. We also propose and test 'level(0) preconditioner'and 'level(2) ILU preconditioner', which are another versions of the existing 'level(1) ILU preconditioner', for the global matrix generated by P2/P1 finite element method of incompressible Navier-Stokes equations. We show that 'level(2) ILU preconditioner'performs much better than the others only with a little extra computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.