Abstract

With increasing demands for high-speed and high-precision machining technology, CBN shape grinding is an effective means in the field of precision machining for screw rotors. Aiming at the high precision machining of screw rotors, a mathematical model for the axial profiles of the CBN wheel for machining screw rotors is developed based on theory of gear engagement. Small electroplated CBN wheel is firstly used to grinding screw rotors. Taking the backlash of screw rotors and the coating thickness of CBN layer into consideration, the modification of the base body of the wheel shape is introduced into the design of CBN wheel. For reducing the tooth profile errors of screw rotors induced by mounting errors and wears of CBN wheel, a mathematical model of the error analyses is established and the influence curves of the profile errors affected by mounting errors and radius error of grinding wheel are proposed. The electroplated CBN wheels for the screw rotors are made to verify the validity and effectiveness of the presented method and the machining experiments were performed. Results of this study reveals that the method proposed in this paper can be used as the precision grinding of screw rotors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.