Abstract

Discharging waste water from the bauxite desilication process will bring potential environmental risk from the residual ions and organic compounds, especially hydrolyzed polyacrylamide. Characterization of the microbial community diversity in waste water plays an important role in the biological treatment of waste water. In this study, eight waste water samples from five flotation plants in China were investigated. The microbial community and functional profiles within the waste water were analyzed by a metagenomic sequencing method and associated with geochemical properties. The results revealed that Proteobacteria and Firmicutes were the dominant bacterial phyla. Both phylogenetical and clusters of orthologous groups' analyses indicated that Tepidicella, Paracoccus, Pseudomonas, and Exiguobacterium could be the dominant bacterial genera in the waste water from bauxite desilication process for their abilities to biodegrade complex organic compounds. The results of the microbial community diversity and functional gene compositions analyses provided a beneficial orientation for the biotreatment of waste water, as well as regenerative using of water resources. Besides, this study revealed that waste water from bauxite desilication process was an ideal ecosystem to find novel microorganisms, such as efficient strains for bio-desilication and bio-desulfurization of bauxite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call