Abstract

Taking saturated, weakly cemented sandstone as the research object, nuclear magnetic resonance (NMR) tests were performed before and after six freeze–thaw cycles without water replenishment in order to study and reveal the evolution characteristics of the pore structure of weakly cemented sandstone under a freeze–thaw cycle. The evolution of pore structure under repeated freeze–thaw cycles was studied using T2 fractal theory and spectral peak analysis. The results show that the evolution of the pore structure of weakly cemented sandstone can be divided into three stages during the freeze–thaw cycle. In stage 1, the rock skeleton can still significantly restrict frost heave, and the effect of rock pore expansion occurs only on the primary pore scale, primarily in the transformation between adjacent scales. In stage 2, as the restraint effect of the skeleton on frost heave decreases, small-scale secondary pores are gradually produced, pore expansion occurs step by step, and its connectivity is gradually enhanced. In stage 3, as rock pore connectivity improves, the effect of pore internal pressure growth in the freezing process caused by water migration is weakened, making it impossible to break through the skeleton constraint. Thus, it becomes difficult for freezing and thawing to have an obvious expansion effect on the rock pore structure. The strength of the freeze–thaw cycle degradation effect is determined by the effect of the rock skeleton strength under the freeze–thaw cycles and the connectivity of small-scale pores in the rock. The lower the strength of the rock skeleton, the worse the connectivity of pores, and the more obvious the freeze–thaw degradation effect, and vice versa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.