Abstract

The porous poly(β-hydroxybutyrate-co-β-hydroxyvalerate)(PHBV)/bioactive glasses (BG) tissue engineering scaffold was prepared in this article. The mineralization behavior of the porous PHBV/BG scaffold was observed in simulated body fluid (SBF). The ion concentration of calcium, silicon and phosphorus in different mineralization periods were tested by inductively coupled plasma (ICP). The formation of the hydroxyl carbonate apatite(HCA) layer on the scaffold surface was confirmed by the Fourier transform infrared(FTIR) spectroscopy and X-ray diffraction(XRD) apparatus. The micro morphology and porosity of the scaffold before and after mineralization were observed by scanning electron microscopy(SEM). The in vivo biological evaluation of the porous PHBV/BG scaffolds was carried out by implanting the scaffold into the rat muscle to test the biocompatibility. The in vivo result shows that the composite exhibit good biocompatibility. The porous PHBV/BG scaffold is suitable for tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.