Abstract

Research into the design of new biopolymers/polymer functionalized with nanoparticles is of tremendous interest to the medical sector, particularly with regard to blood-contacting devices. In this present study, a steady blood compatible and active antibacterial coating was fabricated by the grafting of titanium dioxide (TiO2)/polyvinylpyyrolidone (PVP) onto a polyvinyl chloride (PVC) film surface via the direct-current glow discharge plasma method. To enhance the chemical interaction between TiO2/PVP and PVC, the surfaces of the PVC films were functionalized by different plasmas (air, argon, and oxygen) before coating. In this study, the plasma parameters were varied, such as treatment time of about 5–20 min for a constant power of 100 W, potential 300 V, and a constant gas pressure of 2 Pa for air, argon, and oxygen gas environment. Then, the different plasma treatments on the PVC films, TiO2/PVP were grafted using a simple dip-coating method. In addition, the TiO2/PVP-grafted PVC films were characterized by contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, field-emission scanning electron microscope, and x-ray photo electron spectroscopy. Importantly, TiO2/PVP is grafted onto the PVC surface due to the plasma-based retained functionality and demonstrates adhesive efficiency, which was observed by XPS. The bio-stability of the TiO2/PVP-modified PVC film was evaluated by in vitro platelet activation analysis and protein adsorption analysis. Then, the antibacterial properties were evaluated by the agar diffusion method against Escherichia coli. The result reveals that the grafting of TiO2/PVP was slightly higher for the 15 min oxygen plasma-functionalized PVC, which significantly decreases the platelet adhesion and protein adsorption. Moreover, the antibacterial properties of the 15 min oxygen plasma-functionalized PVC with TiO2/PVP-grafted film is also greatly improved compared with an air- and argon-functionalized surface. Our present study demonstrates that the plasma treatment is a beneficial and eco-friendly method to achieve higher hydrophilicity. Furthermore, our results indicated that the plasma-modified PVC exhibits appropriate anti-fouling performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call