Abstract

Abstract In recent years, porous materials are gaining in popularity for engineering applications, due to their special characteristics, such as low density, large specific surface area, and excellent permeability. In this study, powder processing technique was used to prepare ultra-high molecular weight polyethylene UHMWPE porous materials. Sintering temperature was obtained by combining differential scanning calorimetry (DSC) analysis and tensile tests. The surface morphology of sintering necks and tensile fracture were observed by scanning electron microscopy (SEM). Finally, single factor tests and orthogonal experiments were conducted to optimize three main processing parameters for a better permeability. It is found that the proper sintering temperature range would be from 143 to 153.1°C. According to the significance of influence, processing factors come in the sequence of the particle size, the compaction strength and the sintering temperature. Porous materials were successfully prepared, under the optimized parameters as the particle size >250 μm, the compaction strength of 2.5 MPa and the sintering temperature of 152°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call