Abstract
A wire-plate electrostatic precipitator (ESP) is developed to analyze the particle transport characteristics and the influence of various factors on the performance of ESP. Above all, an experimental device is built to measure the current density distribution of the plates and obtain good consistency with the numerical simulation results, taking the ESP model established by COMSOL/Multiphysics as the numerical simulating object. Firstly, the electric field is solved by finite element method(FEM) to obtain the potential and charge density distribution. Then, the influence of secondary flow on the main flow at different flow velocities is explored. Finally, multi-physics coupling calculations show the influence of dust particle properties, electrode configuration, and operating conditions on ESP performance. The study found that the particle diameter is positively correlated with its charge, force, and motion, and the relative permittivity of the particles affects the collecting efficiency by affecting its charge difficulty. The wire-to-wire spacing is not proportional to collecting efficiency, when the spacing is 80 mm, the efficiency and the corona current can be maximized. Average electric field strength, corona current density, and current density distribution standard deviation satisfy the cubic function relationship. In addition, the effect of airflow velocity on collecting efficiency and particle precipitation is revealed. It provides a valuable basis for design and performance optimization of ESP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.