Abstract
Inorganic fiber network including YSZ fiber which acts as catalyst support was created by the simple paper-making process, and novel Ni-loaded paper-structured catalysts (PSCs) with excellent catalytic activity for the dry reforming of methane were designed and developed. The PSCs exhibited high fuel conversion comparable to the conventional powdered catalysts with less than one-tenth catalyst weights. The significant advantages of the PSCs are their high mechanical flexibility and material workability. So far, a functionally-graded catalytic reaction field which leads to uniform temperature distribution during biogas reforming resulting in stable operation of planar SOFC was successfully developed by the PSC array based on the kinetic simulation model built in this research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.