Abstract

As an effective method, diesel particulate filter (DPF) technology has a great contribution in reducing soot emissions from diesel engines. To achieve passive regeneration of DPF at low temperatures, K-doped Ce0.5Mn0.5O2 catalysts were synthesized using sol–gel method. The effect of K-doped catalysts-Kz–Ce0.5Mn0.5O2-on the oxidation of soot had been studied by thermogravimetric analysis, and the corresponding catalytic properties were evaluated based on X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), O2 temperature programmed desorption (O2-TPD) Raman spectroscopy (Raman), Brunauer–Emmett–Teller (BET) and Fourier-Transform-Infrared (FTIR).The results showed that K doping facilitated the oxidation of diesel particulate matter, which was indicated by the entire mass loss curve shifting to lower temperatures. K0.2–Ce0.5Mn0.5O2 showed the best performance among the series of K-doped catalysts. Compared with the findings for Ce0.5Mn0.5O2, the ignition temperature of soot oxidation (Ti) had been lowered by 28 ℃, and the maximum peak combustion temperature (Tm) of the dry soot decreased by 61 °C. Furthermore, compared with the Ce0.5Mn0.5O2-catalyzed reaction, K doping led to a lower activation energy and significantly improved pre-exponential factor. The minimum reaction activation energy of 27.46 kJ/mol was exhibited by K0.2–Ce0.5Mn0.5O2.

Highlights

  • As an effective method, diesel particulate filter (DPF) technology has a great contribution in reducing soot emissions from diesel engines

  • Finding proper ways to cut down soot emissions from diesel engines become one of the researching hotpots in the study progress of diesel vehicles, that’ why many researchers studied diesel particulate filters (DPF), an effective methods of lowering soot emissions by passive regeneration by chemical catalysis and improving the temperature of the diesel exhaust which is sufficient for soot to burn out

  • The activation energy and pre-exponential factor of each reaction were determined by further analysis of particle oxidation kinetics

Read more

Summary

Introduction

Diesel particulate filter (DPF) technology has a great contribution in reducing soot emissions from diesel engines. The introduction of K significantly lowered the oxidation temperature of diesel exhaust particulates compared with the catalytic activity of ­Ce0.5Mn0.5O2.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call