Abstract

With the rapid development of e-commerce and the global economy, order picking mode of multiple batches and small quantities becoming more and more, which makes artificial picking system occupy a larger proportion in a variety of ways. The optimization study of the artificial person picking system has a crucial role to enhance the efficiency of batch picking, then increasing customer satisfaction. For order batching problem, according to scholars in the study of this problem, including taking the picking equipment capacity and load restrictions into account rarely. In the paper, Hopfield Neural Network algorithm for sorting equipment were chosen to establish a capacity constraint order batching model which taking shortest path of all orders as the objective function and maximum equipment utilization order batching model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.