Abstract

The mean sliding friction factor was derived in the mixed elasto-hydrodynamic lubrication state, which contains the complete elasto-hydrodynamic and boundary lubrication synchronously. Based on the geometry and load contact characteristics of spiral bevel gears, the power loss from sliding friction of each point on the long axis of the instantaneous contact ellipse was calculated. Meanwhile, the function of sliding friction power loss in a mesh cycle was established. The meshing efficiency was obtained by integrating the above function. In addition, the meshing efficiency was increased through optimizing the contact parameters. The validity and superiority of the algorithm was demonstrated with analyzing an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.