Abstract

Piroxicam is a bioactive compound classified as a non-steroidal anti-inflammatory drug (NSAID). However, its low solubility in water imposes a serious limitation for its application in the pharmaceutical industry. Using cyclodextrins to form complexes can enhance the dissolution rate, solubility, and bioavailability of piroxicam. In this study, piroxicam/β-cyclodextrin complexes are prepared in supercritical carbon dioxide (SC-CO2) in the solid state and the process was optimized using response surface methodology (RSM). UV-Vis spectroscopy, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and dissolution profile in water were used to characterized the complex under optimized temperature, residence time, moisture, and ternary agent. Finally, the maximum reaction yield of the inclusion complex was predicted to be 95% at the optimal conditions of 266 bar, 136oC, 1.84:1 ratio of cyclodextrin:piroxicam, and 1.5:1 ratio of lysine:piroxicam. Large scale production of inclusion complexes can be developed from the results of this work on optimizing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.