Abstract

Abstract As turbine operating conditions change, the blade height and tip clearance undergo continuous alterations due to the combined effects of thermal stress, aerodynamic forces and centrifugal forces, subsequently influencing the turbine performance. To take this effect into account in turbine performance prediction, this study considers the influence of fluid-heat-structure coupling on blade height and tip clearance and establishes a one-dimensional comprehensive prediction method for multi-stage axial turbine performance considering blade height. When compared with experimental results from a four-stage axial turbine, by considering the fluid-thermal-solid coupling effects, the average relative error in total pressure ratio prediction is reduced from 3.76 % to 1.99 % and the average relative error in total temperature ratio prediction is reduced from 2.03 % to 1.26 %. Compared with the traditional flow prediction method, the prediction results of turbine characteristics considering blade height and tip clearance changes in this paper are closer to the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.