Abstract

This paper presents a collaborative control scheme involving “unloading-solidifying” to prevent rock bursts during narrow pillar recovery at large mining depths. In this study, the stress distribution rule of coal rock mass during the excavation and mining process is studied, and the energy accumulation characteristics of the overlying hard and thick roof structure are investigated. In this way, the rock burst inducing mechanism of the narrow coal pillar working face under complex conditions is investigated. The results show that the peak lateral bearing pressure of the goaf and the maximum horizontal principal stress provide the static load condition for the occurrence of rock burst during roadway excavation. Affected by the superposition of “near-field high static load + far-field dynamic load”, it is extremely easy to reach the critical destabilization value during the mining period at the narrow coal pillar working face. According to the monitoring results, the developed coordinated control scheme, which focuses on the strong pressure relief and strong support in near-field high-bearing pressure coal mass and the pressure relief in far-field high-level hard roof with an advanced pre-cracking roof, can effectively avoid the occurrence of rock burst accidents on narrow coal pillar working face.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.