Abstract

Ducted rocket has been widely concerned on account of its high specific impulse, combustion stability and convenient maintenance which mixes the exhaust from a fuel gas generator with air from air inlet, and burns to produce thrust. It is necessary to establish two-dimensional or three-dimensional numerical models based on computational fluid dynamics to study on the flowfield in afterburner which is the key of ducted rocket because of expensive experiments, which is aimed at providing theoretical foundation for ducted rocket’s development. In this paper, the gas-phase turbulent combustion process in afterburner with dual inlet three-dimensional mode was simulated numerically by solving Favre-averaged compressible turbulent N-S equations, the renormalization group (RNG) k-ε turbulence model was applied to simulate the turbulent flow, and Eddy-Dissipation Model (EDM) was applied to simulate gas combustion. Through simulation, situation analysis of flowfield in afterburner was done, and the influence of mixing combustion on afterburner was studied by taking air inlet angles and air-fuel ratio into account respectively. The results indicate that the distribution of temperature in afterburner is nonuniform, the backflow and axial swirl produced by gas mixing have an important influence on afterburner combustion. As air inlet angle is increased, the intensity of gas mixing is enhanced which is beneficial for afterburner combustion. That increasing air-fuel ratio is able to strength contact of oxygen with fuel gas, so that more fuel gas is consumed in the same location which is more beneficial for afterburner combustion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.