Abstract

Pool nucleate boiling heat transfer experiments were performed for water at 0.101 MPa to examine the elementary process of the nucleate boiling. Heat transfer surface was made from a copper printed circuit board. Direct current was supplied to heat it up. The Bakelite plate of the backside of a copper layer was taken off at the center portion of the heat transfer surface. The instantaneous variation of the backside temperature of the heat transfer surface was measured with an infrared radiation camera. Bubble behavior was recorded with a high speed video camera. In the isolated bubble region, surface temperature was uniform during waiting time. When boiling bubble generation started, a large dip in the surface temperature was formed under the bubble. After the bubble left from the heat transfer surface, the surface temperature returned to former uniform temperature distribution. Surface temperature was not affected by the bubble generation beyond 1.6 mm from the center of the bubble. In the isolated bubble region, a convection term was approximately 80 % in total heat transfer rate. The importance of the three-phase interface line in the heat transfer should be checked carefully. In the intermediate and high heat flux region, the variation of surface temperature and heat flux were small. Rather those were close to their average values even at critical heat flux condition. It seemed that the large part of the heat transfer surface was covered with water even at the critical heat flux condition. The heat flux at the area that appeared to be the three-phase contact line was not so high and close to the average heat flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call