Abstract

Most of the existing near-infrared noninvasive blood glucose detection models focus on the relationship between near-infrared absorbance and blood glucose concentration, but do not consider the impact of human physiological state on blood glucose concentration. In order to improve the performance of prediction model, particle swarm optimization (PSO) algorithm was used to train the structure paramters of back propagation (BP) neural network. Moreover, systolic blood pressure, pulse rate, body temperature and 1 550 nm absorbance were introduced as input variables of blood glucose concentration prediction model, and BP neural network was used as prediction model. In order to solve the problem that traditional BP neural network is easy to fall into local optimization, a hybrid model based on PSO-BP was introduced in this paper. The results showed that the prediction effect of PSO-BP model was better than that of traditional BP neural network. The prediction root mean square error and correlation coefficient of ten-fold cross-validation were 0.95 mmol/L and 0.74, respectively. The Clarke error grid analysis results showed that the proportion of model prediction results falling into region A was 84.39%, and the proportion falling into region B was 15.61%, which met the clinical requirements. The model can quickly measure the blood glucose concentration of the subject, and has relatively high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.