Abstract

Hypersonic flow control with plasma discharge has received a good deal of research attention in recent years. In this study, the direct current (DC) plasma discharge over a flat plate was investigated as a prospective futuristic aerodynamic control device. Spectroscopic analysis showed that the vibrational temperature of nitrogen molecule is 7000 K and the translational temperature is 3500 K at maximum, which suggested that the plasma is at a vibrationally nonequilibrium state. Since electromagnetic forces for the futuristic aerodynamic control can mainly be imposed on ionized molecules, a numerical analysis was conducted based on Park’s Two-temperature model and Gupta’s 11-species model in order to estimate the distribution of high vibrational-temperature region. It was revealed that the concentration of high-vibrational temperature region exists in the boundary layer over flatplate surface, which is consistent with the experimental result of vibrationally exited nitrogen molecular distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call