Abstract

Melamine-impregnated paper waste (MIPW) is an unavoidable byproduct of the melamine-impregnated paper production process, and it must be urgently disposed. In this paper, due to its high N content, MIPW was used as a N source to co-pyrolyze with camellia oleifera shell (COS). By changing the proportion of MIPW in the raw materials, the migration path of the N was studied during the co-pyrolysis process. X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), total nitrogen analysis (TN) and ultraviolet spectrophotometry were used to determine the content and the types of N-containing components in raw materials and products. The results showed that during the co-pyrolysis process, the N in MIPW and COS would be converted into different types of N-containing components, and the proportion of MIPW in raw materials directly impacts the product distribution and the N migration path. With the increase in the proportion of MIPW from 10 to 50 wt.% (daf, mass ratio), the proportion of N in raw materials that migrated into the solid phase decreased from 27.58 to 16.31 wt.%, while that which migrated to the gas and liquid phases increased from 24.92 and 47.50 wt.% to 25.97 and 57.72 wt.%, respectively. The proportions of N in the raw materials that changed into pyridinic-N, pyrrolic-N and graphitic-N in the solid phase and N2-N in the gas phase were decreased. The proportions of NH3-N and HCN-N in the gas phase and NH3-N and organic-N in the liquid phase were increased. Moreover, synergies were observed during the co-pyrolysis process, which affected the N migration path in the raw material. This study will provide policy directions and theoretical support for the comprehensive utilization of MIPW and COS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.