Abstract

The present study has investigated the cluster deposition process of thin film formation. MD simulation has been employed to study the morphology of the collision system and to investigate the transient behavior, which occurred between the atoms of the deposited cluster and the substrate. The substrate relaxation process and the influence of the incident energy were also discussed. A traveling condition of the cluster for random incidences was applied in the simulations, and the ratio of translational and total kinetic energy of clusters were varied to observe their influence on the cluster's diffusivity. It was found that the system's reconstruction phenomena tended to recover the lattice structure, which was disordered by the impact cluster. After thermal equilibrium, the partial wetting behaviors or cluster embedded morphology were observed according to different incident energy. In the “impact process”, the high local temperature and high heat transfer rate were observed due to the high compressibility of the impact zone. By changing the ratio of translational and total kinetic energy of clusters, the simulation results indicated that translational kinetic energy of cluster contributed to the local temperature raising and the interpenetration of cluster atoms, while the vibrational energy benefited the spreading behaviors of cluster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call