Abstract

In order to improve the clamping force control accuracy of electro-mechanical braking system of electric vehicles, a multi-closed loop control strategy of electro-mechanical braking based on clamping force is proposed. A detailed EMB mathematical model is established. The sliding mode speed controller and improved fuzzy PID clamping force controller are designed, and the joint simulation model of the speed the clamping force controller is established, and simulation experiments are used to verify the effectiveness of the control strategy. Comparative analysis of three simulation conditions, the maximum adjustment time of the proposed control strategy is 0.254 s and the maximum overshoot is 0.45%. The results of research show that the control strategy designed in this paper can quickly and stably reach the target value of clamping force, has a strong anti-interference capability, has some reference value in the electric vehicle braking control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.