Abstract

For preparing good performance polymer materials, poly(trimethylene terephthalate)/CaCO3nanocomposites were prepared and their morphology, rheological behavior, mechanical properties, heat distortion, and crystallization behaviors were investigated by transmission electron microscopy, capillary rheometer, universal testing machine, impact tester, heat distortion temperature tester, and differential scanning calorimetry (DSC), respectively. The results suggest that the nano-CaCO3particles are dispersed uniformly in the polymer matrix. PTT/CaCO3nanocomposites are pseudoplastic fluids, and the CaCO3nanoparticles serve as a lubricant by decreasing the apparent viscosity of the nanocomposites; however, both the apparent viscosity and the pseudoplasticity of the nanocomposites increase with increasing CaCO3contents. The nanoparticles also have nucleation effects on PTT’s crystallization by increasing the crystallization rate and temperature; however, excessive nanoparticles will depress this effect because of the agglomeration of the particles. The mechanical properties suggest that the CaCO3nanoparticles have good effects on improving the impact strength and tensile strength with proper content of fillers. The nanofillers can greatly increase the heat distortion property of the nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.