Abstract

In this paper, the possible molecular mechanism of Forsythia suspensa for the anti-tumor effect was investigated through the network pharmacology and molecular docking. The main components of F. suspensa were obtained by literature mining and TCMSP database. Cancer-related genes were collected with use of GAD and OMIM databases. The interaction network of Compounds-Targets-Pathways was constructed through Cytoscpe software. The targets were analyzed by GO and KEGG means in DAVID database, and the KEGG signal pathways were visualized. Component-Target network analysis results were verified by PyRx molecular docking. The results showed that a total of 26 main components of F. suspensa may act on key targets such as AKT1, IL6, ESR1, EGFR, EGF and CCND1, and were involved in 20 signal pathways. Molecular docking analysis showed that hydrogen bonding, hydrophobic action and Pi-cation bonding maybe the main forms of interaction. In this study, we revealed the anti-tumor effect of F. suspensa through the network of Compounds-Targets-Pathways and molecular docking verification, providing reference and guidance for systematically elucidating the anti-tumor molecular mechanism of the main components of F. suspensa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call