Abstract

Terahertz (THz) fields are increasingly being used to address the critical challenges associated with achieving high data rates and rapid communication. In this study, a hybrid plasmonic THz waveguide is designed and analysed operating in the 2.5–3.5 THz frequency range. The waveguide is constructed using gallium arsenide as the high-refractive-index core, surrounded by aluminium arsenide and silver placed on a high-density polyethylene (HDPE) substrate. Graphene is strategically positioned between the HDPE layers to enhance light confinement. The mode properties of the proposed waveguide are simulated with Comol Multiphysics using the finite-element method and show unique characteristics. Observation of the simulated results at 2.5–3.5 THz reveals a high effective refractive index of 3.79, a maximum effective mode area of 1.88 mm2, a high birefringence of 0.2, a low dispersion of 0.10 ps THz−1 cm−1, a high mode field diameter of 15.8 mm, a high beat length of 123 mm and a low confinement loss of 1.79 × 10−9 mm−1. These features make the proposed waveguide suitable for applications in photonic integrated circuits for THz communications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.