Abstract
A general theoretical model for microwave photonic filters based on multi-wavelength light source and dispersive media is summarized and presented, and is applied to the analysis of double-laser-based microwave photonic notch filters’ performance. The different influences of the double-sideband(DSB) modulation and the single-sideband(SSB) modulation are demonstrated and explained theoretically. Furthermore, the impact of different factors, such as frequency spacing, 3dB bandwidth and the spectrum amplitude mismatch on the performance of the microwave photonic notch filters are also studied. The numerical simulation results are in good agreement with predictions, and could be beneficial for future optimization of microwave photonic filters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.