Abstract

Differences in the spontaneous combustion mechanism characteristics of Coal-Oil Symbiosis (COS) significantly affect coal mines' safety management and ecological environment maintenance. Accordingly, this study aims to investigate COS's macroscopic and microstructural characteristics with different oil mass percentage using simultaneous thermal analysis, low-temperature N2 adsorption, scanning electron microscopy (SEM), and in-situ Fourier transform infrared spectroscopy (FTIR). The results showed that with the increase of oil mass percentage, the COS displayed the weakening of oxygen absorption and the advance of some characteristic temperatures, and 11.5 °C advanced the maximum weight loss temperature on average. For the 25 % oil sample, the ignition temperature was 9.5 °C lower than that of the raw coal. Additionally, the apparent activation energy of the high oil mass percentage sample was significantly reduced in the pyrolysis and combustion stages, and when the oil mass percentage was 25 %, the activation energies of the two stages decreased by 89 % and 60.65 %, respectively. Compared to raw coal, COS exhibits fewer macropores and surface pores covered by oil, which limits oxygen adsorption. Moreover, COS with higher oil mass percentage had an increase in hydroxyl and aliphatic hydrocarbon groups, and the CH3 + CH2 content of COS increased by 69.2 % on average, providing more active groups, thereby promoting spontaneous combustion. This study provides an important reference and theoretical support for further understanding the structural evolution and oxidation kinetic behavior of COS, contributing to disaster prevention and ecological environmental protection in coal-oil coexistence mining areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.