Abstract

Abstract The seeded infiltration-growth process is an alternative to replace conventional melt processing techniques for the preparation of bulk YBa2Cu3O7-s (Y-123) with finely dispersed small size of Y2BaCuO5 (Y-211) particles. The directional solidification is also a quite effective technique to produce well-oriented cylinder grains. Well-oriented single domain Y-123 bulks can be fabricated by combining seeded infiltration-growth and directional solidification technique (DSIG). The infiltration-growth process is able to control the size and distribution of Y-211 particles in the final Y-123 superconductor and can fabricate net-shape bulk. Y-211 particles and a liquid phase precursor were used as starting materials in the present investigation. The main parameters (temperature gradient, configuration and maximum processing temperature) of the directional seeded infiltration-growth process were discussed in the present paper. The result shows that Y-211 particle sizes upon using 035 liquid phase composition are smaller than those upon using other two liquid phase compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call