Abstract
Ni60A/WC composite coating is prepared on 45 steel substrate by alternating-magnetic-field-assisted laser cladding. We compare the effects of different magnetic field intensity on WC particle distribution, microstructure, phase composition, microhardness and wear; in addition, the mechanism of alternating magnetic fields on cladding layers is briefly analyzed. The results show that an alternating magnetic field can significantly homogenize the distribution of WC particles. WC particles at the bottom are stirred and dispersed to the middle and upper area of the laser pool. The distribution of WC in the bottom region 6 of the coating decreases from 19.1% to 10%, the distribution of WC in the bottom region 5 decreases from 46.46% to 33.3%, the WC distribution in the top region 1 of the coating increases from 0 to 7.7% and the WC distribution in the top region 2 of the coating increases from 8.08% to 12.2%. The stirring of alternating magnetic fields strengthens the solute convection in the laser pool, refines the snowflake-shaped carbide hard phase and improves the coating microhardness and wear property, and adhesive wear and abrasive wear decrease gradually with increasing magnetic field strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.