Abstract

Cathodic arc physical vapor deposition (CAPVD) is one of the physical Vapor deposition (PVD) techniques used to coat titanium nitride (TiN) on biomedical implants due to its good adhesion and high evaporation rate. However, this technique emits micro droplets which have can detrimental effect on the coating performance. Previous studies reported that micro droplets can be controlled through proper deposition parameters. In this paper, the PVD coating was performed on the Ti-13Zr-13Nb biomedical alloy with different substrate temperatures. Scanning electron microscopy (SEM) was used to characterized the surface morphology and coating thickness while X-Ray Diffraction (XRD was employed to evaluate the crystal phase of the coated substrates. Image analysis software was used to quantify micro droplets counts. The results show that higher substrate temperature able to decrease a significant amount of micro droplets and concurrently increase the thickness of TiN coating. A mixed crystal planes of (111) and (200) are obtained on the coated substrates at this setting which exhibits denser structure as compared to substrates coated at lower substrate temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.