Abstract

In comparison with the general stirring batch reactor, the membrane reactor has been reported to have higher molar ratios of methanol to oil but ultralow catalyst concentration in the biodiesel production. In this research, the methanolysis of canola oil is conducted in a stirring batch reactor in the presence of NaOH as a catalyst. Based on the investigation of the effects of operating conditions, including methanol to oil molar ration, catalyst concentrations and temperatures, the time course of the reaction path for the reactant composition in the ternary phase diagram of oil–FAME–MeOH offers an effective way to understand the operation of membrane reactors in the biodiesel production. The results show that increasing the residence time of the whole reactant system within the two-phase zone is good for the separation operation through the membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.