Abstract

In situ melting and crystallization of short-linear α-1,4-glucan (short-chain amylose, or SCA) from debranched waxy starches were investigated by synchrotron wide-angle X-ray diffraction. Amorphous SCA was prepared by dissolving completely debranched waxy starches in alkaline solution and neutralized by hydrochloric acid. When hydrated with 50% water at 25°C, all amorphous SCA crystallized immediately and gave a B-type structure. The SCA from debranched waxy potato starch had a longer average chain length and a higher melting temperature but relatively lower crystallinity upon hydration; it was not completely melted at 100°C and retained its original B-type structure during rapid cooling. In contrast, the SCA from debranched waxy wheat and waxy maize starches had a large portion of low molecular weight fractions, a higher crystallinity upon hydration, and a lower melting temperature. These differences suggest that amylopectin short chains crystallized more readily but their crystals were weaker than those of long chains. After the B-type crystals of hydrated SCA from waxy wheat and waxy maize starches melted, they reformed into the A-type polymorph upon rapid cooling. The thermal properties showed that the A-type polymorph of debranched waxy wheat and waxy maize starches had a higher melting temperature than their B-type structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.