Abstract

The molecular weight of the effective components of traditional Chinese medicine( TCM) is usually less than 1 000.However, " noneffective common macromolecules"( starch,pectin and other macromolecules commonly present in the water extract of TCM) generally have no physiological activity,which restricts the overall advantages of membrane technology to obtain small molecular pharmacodynamic substances,and such macromolecules are the main influence factor of membrane fouling. Therefore,in order to obtain the total pharmacological efficacy of TCM,based on the molecular structure analysis of noneffective common macromolecules,aimed at the key scientific problems in correlation between the molecular structure of noneffective common macromolecules and the pore structure of membrane material,and by referring to the material science theory and molecular simulation method,the correlations between noneffective common macromolecules' molecular structure-solution environment-membrane antagonism were investigated. Multidisciplinary approaches could be integrated to: ① optimize the spatial form of membrane surface and improve the membrane's antifouling ability; ② accurately control the pore structure and the size distribution of membranes,aimed at the innovative preparation technology of special membrane used for TCM; ③ adjust solution environment based on the analysis of molecular structure,and establish the pretreatment method based on the optimization of solution environment. Furthermore,the technical bottleneck on how to obtain the pharmacodynamic micromolecules effectively might be solved,and the theory and technology about TCM pharmaceutical engineering could be developed based on the concept of multivariate and integration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.