Abstract

This paper proposes a new form of composite beam: a multi-cavity steel-concrete composite beam. This composite beam uses internal perforated steel plate to connect the concrete with the steel structure, and shear connectors are no longer required, which is more suitable for industrial production. The mechanical properties of a multi-cavity steel-concrete composite beam in industrial applications are studied to avoid failures. In this paper, two multi-cavity steel-concrete composite beams with a size of 2500 mm × 200 mm × 300 mm were prepared, in which the angle of internal porous steel plate was set as 60° and 75°, respectively. A full-scale static load test was conducted on the beams to research its deformation and failure modes. The finite element software ANSYS was used to perform finite element modeling of multi-cavity steel-concrete composite beams and to analyze the influence of concrete strength, steel strength, porosity, and the angle of internal porous steel plate on the mechanical properties of composite beams. The results are as follows: before the composite beam reaches its serviceability limit state, its deformation basically shows a linear change; with the increase of load, the plastic deformation is gradually obvious, which can still provide a certain bearing capacity in the failure stage; the bearing capacity of the composite beam is positively correlated with the strength of concrete and steel, while negatively correlated with the porosity and the angle of internal porous steel plate; composite beams have large bearing capacity, good ductility and integrity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call