Abstract
For the purpose of investigating the microstructure deformation of 28Mn-10Al-C steel at high speeds under different strain rates, the dynamic properties of 28Mn-10Al-C steel under varying strain rates and the feasibility of the tensile specimens with a variable cross-section were evaluated using a combination of tensile test, optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), and electron back scatter diffraction (EBSD). The test results demonstrate that the high-tension tensile process of 28Mn-10Al-C steel involves a competitive process of work hardening, deformation speed reinforcement, and adiabatic temperature elevation. The elasticity limit, tensile strength, and elongation of 28Mn-10Al-C steel increase with the rate of deformation. Specifically, at a deformation rate of 103 s−1, the yield strength, tensile strength, and elongation of the test steel increase to 817 MPa, 1047 MPa, and 60.6%, respectively, indicating significant improvements in all properties. Through analyzing its mechanical properties, dislocation density, and angle grain boundary density, this article discusses the deformation behavior of 28Mn-10Al-C steel during dynamic deformation. It is found that the dominant hardening mechanism and softening mechanism in the deformation process change with the increase in strain rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.