Abstract
As a novel technology for slope protection, living stumps have demonstrated the ability to significantly enhance slope stability. This study aims to investigate the mechanical properties of living-stump root systems and their reinforcement mechanisms on slopes through three-dimensional modeling tests. Using ABS materials, a 3D model of a living elm stump was created via 3D printing; this was followed by slope model testing. The reinforcement mechanisms of living stumps were examined through a combination of model testing and numerical simulation. The results reveal that the presence of living stumps in the lower and middle sections of a slope causes the maximum-shear-stress zone of the soil to shift deeper. The stress distribution around the living stump is notably improved owing to the lateral root system. Living stumps positioned in the lower part of the slope intersect the potential sliding surface, gradually transferring soil shear stress to the root system through root–soil interactions. Furthermore, the tap roots and lateral roots of living stumps form a robust spatial network that can collectively withstand soil shear stress, thereby enhancing slope stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.