Abstract

In the process of underground engineering construction, rock mass often faces the dual influence of dynamic load disturbance and groundwater, it is therefore essential to investigate the mechanical response of the rock mass under the coupling effect of dynamic load disturbance and water content. In this paper, dynamic load impact tests were carried out on sandstone with bullet velocities of 5 m/s, 10 m/s, and 15 m/s and water content of 0, 0.3, 0.6, and 0.9, and the mechanical behavior and mechanism response of water content to sandstone were investigated. The research findings indicate that this study has made significant contributions in quantifying the along grain and trans-grain fractures of microcracks. It has explored the influence of water content and dynamic loading on the strength mechanism of sandstone. It was discovered that the dynamic loading and water content significantly affect the ratio of along grain and trans-grain fractures, thereby influencing the dynamic behavior of sandstone. The findings suggest a negative association between rock strength and water content and that its peak strength rises as the bullet velocity rises. The fracture characteristics of rock are influenced by water content and bullet velocity. The sample’s fracture degree increases with an increase in water content, its particle size distribution map is evident, and there is a positive relation between bullet velocity and fractal dimension. The energy conversion mechanism of the rock is influenced by the water content, as the bullet velocity increases, the absorbed energy density of the rock becomes higher. Furthermore, the correlation between the absorbed energy intensity and density and its fractal dimension is quantified. It is found that energy density and strength are positively correlated. The greater the fractal dimension, the higher the energy density absorbed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call