Abstract
The main objective of this study is to improve the mathematical modelling of Cymbopogon winterianus essential oil extraction by steam distillation proposed by Cassel and Vargas by minimum 5% error reduction. Two process variable of steam distillation which are extraction time and raw material state (dry or natural) has been optimized by using factorial experimental planning to obtain high yields of citronella essential oil from twig and leaves of lemongrass species Cymbopogon winterianus (C.winterianus). The optimal condition for maximum yield (0.942%) were found to be an extraction time, 4 hr, state, natural plant. The study of Cassel and Vargas was subsequently continued with five proposed kinetics model of the extraction process. The modelling of the extraction process is optimized by using one adjustable parameter of the model and the adequacy of the fit of the models to the experimental data are analyzed by using three statistical criteria that are correlation coefficient (r) ,the root mean square error (RMSE) and the mean relative deviation modulus (E). The result has shown that the mathematical model developed by Ana based on mass transfer fundamentals is the optimum mathematical model for the extraction of Cymbopogon winterianus essential oil by steam distillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Science & Process Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.