Abstract

Heterogeneous composite flooding has performed well with regard to enhanced oil recovery after polymer flooding in recent years. In order to significantly increase oil recovery, the development parameters should be designed differently for each well. However, it is difficult to rapidly allocate development parameters through the lowering of computational costs. Therefore, the authors of this paper carried out research to clarify the main controlling factors of parameter allocation. Firstly, the numerical simulation domain was separated into several regions, with injection wells and production wells at the center of each region. The statistical parameters of each region were calculated. Then, the water injection rate, liquid production rate, and chemical agent concentration were allocated based on the proportion of statistical parameters in each region. A large number of development schemes were designed by combining different injection and production allocations that were calculated based on each statistical parameter. Finally, the development performance of each scheme was simulated and analyzed. The statistical parameters corresponding to the best performance scheme were regarded as the main controlling factors of heterogeneous composite flooding after polymer flooding. These results showed that the main controlling factors for the allocation of the water injection rate were pore volume and permeability variation coefficient. The main controlling factors for liquid production rate were the remaining oil saturation, formation coefficient, and reservoir pressure. The main controlling factors for chemical agent concentration were pressure and permeability variation coefficient. These findings concerning the main factors controlling development parameter allocation were validated by practical application in several well groups of an actual reservoir model. This study provides references for improving heterogeneous composite flooding performance for post-polymer flooding reservoirs in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.