Abstract

Room temperature drop hammer impact and compression after impact (CAI) experiments were conducted on carbon fiber-epoxy resin (CF/EP) composites to investigate the variation in impact load and absorbed energy, as well as to determine the residual compressive strength of CF/EP composites following impact damage. Industrial CT scanning was employed to observe the damage morphology after both impact and compression, aiding in the study of impact-damage and compression-failure mechanisms. The results indicate that, under the impact load, the surface of a CF/EP composite exhibits evident cratering as the impact energy increases, while cracks form along the length direction on the back surface. The residual compressive strength exhibits an inverse relationship with the impact energy. Impact damage occurring at an energy lower than 45 J results in end crushing during the compression of CF/EP composites, whereas energy exceeding 45 J leads to the formation of long cracks spanning the entire width of the specimen, primarily distributed symmetrically along the center of the specimen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.