Abstract

This note is concerned with establishing existence theory of solutions to a class of implicit fractional differential equations (FODEs) involving nonsingular derivative. By using usual classical fixed point theorems of Banach and Krasnoselskii, we develop sufficient conditions for the existence of at least one solution and its uniqueness. Further, some results about Ulam–Hyers stability and its generalization are also discussed. Two suitable examples are given to demonstrate the results.

Highlights

  • fractional differential equations (FODEs) have many applications in real world problems; see [1,2,3]

  • The considered differential operator has been introduced in 2015 by Caputo and Fabrizio [11] (in short, we write it as (CFFD)), which replaces the singular kernel by a nonsingular kernel of exponential type

  • The stability theory of Ulam–Hyers type has been properly investigated for ordinary FODEs

Read more

Summary

Introduction

FODEs have many applications in real world problems; see [1,2,3]. The concerned area has been investigated from different aspects in the last several years. These investigations include the existence theory of solutions by the fixed point theory, numerical analysis and stability theory by taking Hadamard, Riemann–Liouville, Caputo, etc., type fractional derivatives (for details, see [4,5,6,7]). The existence theory, together with stability results, has been very well investigated for other FODEs; for details, see [8,9,10]. We are using the fixed point theory to obtain some results for the existence and uniqueness of a solution to the considered problem (1).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.