Abstract

In order to better design and calculate in infrastructures, it is necessary to clarify the key mechanical parameters of structural materials, such as axial compressive strength, elastic modulus and Poisson’s ratio. High-strength grouting material (HSGM) have begun to be used as structural materials with the development of large and complex structures. A large number of test dates were used to analyze the relationship between the axial compressive strength and the cubic compressive strength of HSGM in the paper. ABAQUS software was used to model the specimens of axial compressive strength, and the strain cloud maps of concrete and HSGM were compared and analyzed. By considering HSGM as two-phase (sand and paste) composites, the relationship between elastic modulus of HSGM and mechanical parameters of component materials was derived, and the test results of the mechanical properties of HSGM with different ratios of sand to cement were used for verification. The test results show that the axial compressive strength of the HSGM is closer to the cubic strength than that of the concrete material, which accords with the finite element analysis results. The elastic modulus of high-strength grouting material conforms to the theoretical derivation of two-phase material. The material composition is one of the main factors affecting the elastic modulus. Poisson’s ratio range of high-strength grouting material is 0.25 ± 0.01 by statistical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call