Abstract
Micro electroforming technology is widely used in fabrication of multilayer or moveable metal micro devices. The fabrication of these devices is usually suffered from high internal stress in micro-electroformed layers which seriously restricts the application and development of micro electroforming technology. Therefore, to control the internal stress is very important for improving the quality and performance of micro-electroformed layer. However, published studies on internal stress in the electroforming layer were mostly based on additive-free solution. According to additive solution, the effect of ultrasonic and current density on compressive stress occurring in the electroforming layer is investigated in this paper. The results indicate that the compressive stress keeps increasing with current density within range from 0.2 to 2 A/dm2. Meanwhile, the compressive stress in ultrasonic solution decreases by 73.4 MPa averagely comparing to that in ultrasonic-free solution, and the compressive stress also keeps decreasing with the ultrasonic power which gets the lowest value at 200W. Moreover, the mechanisms of additive-induced compressive stress and ultrasonic relieving compressive stress are discussed. This research work will complement the ultrasonic-stress reduction theory and may contribute to the development of micro electroforming technology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.